Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases.

نویسندگان

  • X Edward Zhou
  • Fen-Fen Soon
  • Ley-Moy Ng
  • Amanda Kovach
  • Kelly M Suino-Powell
  • Jun Li
  • Eu-Leong Yong
  • Jian-Kang Zhu
  • H Eric Xu
  • Karsten Melcher
چکیده

Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.

Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 ...

متن کامل

Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases.

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of t...

متن کامل

A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis.

Protein phosphatases of the 2C family (PP2C) function in the regulation of several signaling pathways from prokaryotes to eukaryotes. In Arabidopsis thaliana, the HAB1 PP2C is a negative regulator of the stress hormone abscisic acid (ABA) signaling. Here, we show that plants expressing a mutant form of HAB1 in which Gly246 was mutated to Asp (G246D) display strong ABA insensitive phenotypes. Ou...

متن کامل

Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele.

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as A...

متن کامل

Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis.

Abscisic acid (ABA) signaling is important for stress responses and developmental processes in plants. A subgroup of protein phosphatase 2C (group A PP2C) or SNF1-related protein kinase 2 (subclass III SnRK2) have been known as major negative or positive regulators of ABA signaling, respectively. Here, we demonstrate the physical and functional linkage between these two major signaling factors....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant signaling & behavior

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2012